

(1) $\frac{200}{\sqrt{3}}$ (2) $200\sqrt{6}$
 (3) $200\sqrt{3}$ (4) $100\sqrt{3}$

Ans. (3)

Sol. From continuity equation

$$A_A V_A = A_B V_B \Rightarrow 6V_A = 3V_B \Rightarrow V_B = 2V_A$$

Applying Bernoulli's equation between A & B,

$$P_A + \frac{1}{2}\rho V_A^2 = P_B + \frac{1}{2}\rho V_B^2$$

$$\Rightarrow \rho g \times 0.05 = \frac{1}{2}\rho [V_B^2 - V_A^2] = \frac{1}{2}\rho (3V_A^2)$$

$$\Rightarrow V_A = \sqrt{\frac{2g \times 0.05}{3}} \text{ m/s} = \frac{1}{\sqrt{3}} \text{ m/s} = \frac{100}{\sqrt{3}} \text{ cm/s}$$

$$\Rightarrow \text{Volume flow rate} = A_A V_A = \frac{6 \times 100}{\sqrt{3}} \text{ cm}^3/\text{sec}$$

$$= 200\sqrt{3} \text{ cm}^3/\text{sec}$$

Correct option (3)

30. In an experiment the values of two spring constants were measured as $k_1 = (10 \pm 0.2) \text{ N/m}$ and $k_2 = (20 \pm 0.3) \text{ N/m}$. If these springs are connected in parallel, then the percentage error in equivalent spring constant is :
 (1) 2.67% (2) 2.33%
 (3) 1.33% (4) 1.67%

Ans. (4)

Sol. For parallel combination of spring,

$$K_{\text{eq}} = K_1 + K_2 = 30 \text{ N/m}$$

$$\Delta K_{\text{eq}} = \Delta K_1 + \Delta K_2 = 0.2 + 0.3 = 0.5 \text{ N/m}$$

$$\therefore \% \text{Error in } K = \frac{0.5}{30} \times 100 = 1.67\%$$

Correct option (4)

31. A 4 kg mass moves under the influence of a force $\vec{F} = (4t^3\hat{i} - 3t\hat{j}) \text{ N}$ where t is the time in second. If mass starts from origin at $t = 0$, the velocity and position after $t = 2\text{s}$ will be :

(1) $\vec{v} = 3\hat{i} + \frac{3}{2}\hat{j}$ $\vec{r} = \frac{6}{5}\hat{i} + \hat{j}$
 (2) $\vec{v} = 4\hat{i} - \frac{3}{2}\hat{j}$ $\vec{r} = \frac{8}{5}\hat{i} - \hat{j}$
 (3) $\vec{v} = 4\hat{i} + \frac{5}{2}\hat{j}$ $\vec{r} = \frac{8}{5}\hat{i} + 2\hat{j}$
 (4) $\vec{v} = 4\hat{i} - \frac{3}{2}\hat{j}$ $\vec{r} = \frac{6}{5}\hat{i} - \hat{j}$

Ans. (2)

Sol. $\vec{F} = 4t^3\hat{i} - 3t\hat{j}$

$$\vec{a} = \frac{\vec{F}}{m} = t^3\hat{i} - \frac{3}{4}\hat{j}$$

$$a_x = t^3$$

$$\frac{dv_x}{dt} = t^3$$

$$\int_{v_x=0}^{v_{x_2}} dv_x = \int_{t=0}^{t=2} t^3 dt$$

$$v_{x_2} - 0 = \left[\frac{t^4}{4} \right]_0^2$$

$$v_{x_2} = 4$$

$$a_y = \frac{-3}{4}t$$

$$\frac{dv_y}{dt} = -\frac{3}{4}t$$

$$\int_{v_y=0}^{v_{y_2}} dv_y = \int_0^2 -\frac{3}{4}t dt$$

$$v_{y_2} = \frac{-3}{4} \left[\frac{t^2}{2} \right]_0^2$$

$$v_{y_2} = \frac{-3}{2}$$

$$\vec{v}_2 = 4\hat{i} - \frac{3}{2}\hat{j}$$

$$v_x = \frac{t^4}{4}$$

$$\int_0^{x_2} dx = \int_0^2 \frac{t^4}{4} dt$$

$$x_2 - 0 = \left[\frac{t^5}{20} \right]_0^2$$

$$x_2 = \frac{8}{5}$$

$$v_y = \frac{-3}{8}t^2$$

$$\int_0^{y_2} dx = \frac{-3}{8}t^2 dt$$

$$y_2 - 0 = \frac{-3}{8} \left[\frac{t^3}{3} \right]_0^2$$

$$y_2 = -1$$

$$\vec{r} = \frac{8}{5}\hat{i} - \hat{j}$$

Correct option (2)

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

35. The electric field a plane electromagnetic wave is given by :

$$E_y = 69 \sin[0.6 \times 10^3 x - 1.8 \times 10^{11} t] \text{ V/m.}$$

The expression for magnetic field associated with this electromagnetic wave is _____ T.

- (1) $B_z = 2.3 \times 10^{-7} \sin[0.6 \times 10^3 x - 1.8 \times 10^{11} t]$
- (2) $B_z = 2.3 \times 10^{-7} \sin[0.6 \times 10^3 x + 1.8 \times 10^{11} t]$
- (3) $B_y = 69 \sin[0.6 \times 10^3 x + 1.8 \times 10^{11} t]$
- (4) $B_y = 2.3 \times 10^{-7} \sin[0.6 \times 10^3 x - 1.8 \times 10^{11} t]$

Ans. (1)

Sol. $\hat{B} = \hat{c} \times \hat{E}$

$\Rightarrow \hat{c} = \hat{i}$ because phase of electric field is function of x.

$\Rightarrow \hat{E} = \hat{j}$ (given)

$\Rightarrow \hat{B} = \hat{i} \times \hat{j} = \hat{k}$

$$|B| = \frac{|E|}{c} = \frac{69 \times 0.6 \times 10^3}{1.8 \times 10^{11}} = \frac{69}{3 \times 10^8}$$

$$|B| = 2.9 \times 10^{-7}$$

$$\vec{B}_2 = 2.9 \times 10^{-7} \sin(0.6 \times 10^3 x - 1.8 \times 10^{11} t)$$

(phase is same as that of electric field)

Correct option (1)

36. In a double slit experiment the distance between the slits is 0.1 cm and the screen is placed at 50 cm from the slits plane. When one slit is covered with a transparent sheet having thickness t and refractive index n(= 1.5), the central fringe shifts by 0.2 cm. The value of t is _____ cm.

- (1) 8×10^{-4}
- (2) 6.0×10^{-3}
- (3) 5.6×10^{-4}
- (4) 5.0×10^{-3}

Ans. (1)

Sol. $ds \sin \theta = (\mu - 1)t$

$$d \left[\frac{x}{D} \right] = (\mu - 1)t$$

$$t = \frac{xd}{D(\mu - 1)}$$

$$= \frac{(0.2)(0.1)}{50(1.5 - 1)}$$

$$t = 8 \times 10^{-4} \text{ cm}$$

Correct option (1)

37. A light wave described by $E = 60 \sin(3 \times 10^{15} t + \sin(12 \times 10^{15} t))$ (in SI units) falls on a metal surface of work function 2.8 eV. The maximum kinetic energy of ejected photoelectron is (approximately) _____ eV. ($h = 6.6 \times 10^{-34} \text{ J-s}$ and $e = 1.6 \times 10^{-19} \text{ C}$)

- (1) 5.1
- (2) 3.8
- (3) 6.0
- (4) 7.8

Ans. (1)

Sol. $\omega_1 = 3 \times 10^{15} \text{ rad/sec}$

$$\omega_2 = 12 \times 10^{15} \text{ rad/sec}$$

$$\therefore v = \frac{\omega}{2\pi}$$

$$E_{\text{photon}} = hv = 6.6 \times 10^{-34} \times 1.91 \times 10^{15} = 1.26 \times 10^{-18} \text{ J}$$

$$E_{\text{max}} = \frac{1.26 \times 10^{-18}}{1.6 \times 10^{-19}} \approx 7.9 \text{ eV}$$

$$K_{\text{max}} = E_{\text{max}} - \phi_0 = 7.9 - 2.8$$

$$K_{\text{max}} = 5.1 \text{ eV}$$

Correct option (1)

38. If an alpha particle with energy 7.7 MeV is bombarded on a thin gold foil, the closest distance from nucleus it can reach is _____ m.

$$(\text{Atomic number of gold} = 79 \text{ and } \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N C}^{-2})$$

- (1) 2.95×10^{-14}
- (2) 2.95×10^{-16}
- (3) 3.85×10^{-16}
- (4) 3.85×10^{-14}

Ans. (1)

Sol. Energy conservation

$$K_i + U_i = K_f + U_f$$

$$7.7 \times 10^6 \times 1.6 \times 10^{-19} + 0$$

$$= 0 + \frac{9 \times 10^9 (1.6 \times 10^{-19}) (79 \times 1.6 \times 10^{-19})}{r}$$

$$r = 2.95 \times 10^{-14}$$

Correct option (1).

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

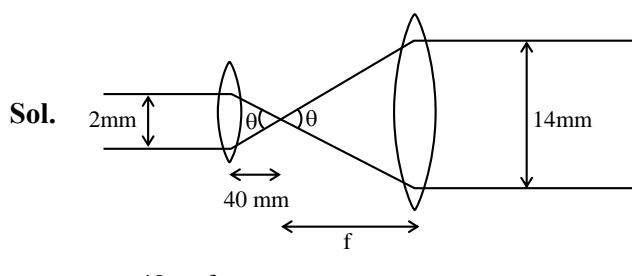
Check Now

$$\text{Now, } r_f = \sqrt{(2-0)^2 + (2-0)^2 + (1-0)^2} = 3 \text{ m}$$

$$r_i = \sqrt{(4-0)^2 + (4-0)^2 + (2-0)^2} = 6 \text{ m}$$

$$\therefore W_{\text{ext}} = (9 \times 10^9) \times (10^{-8} \times 2 \times 10^{-6}) \left[\frac{1}{3} - \frac{1}{6} \right]$$

$$= 3 \times 10^{-5}$$

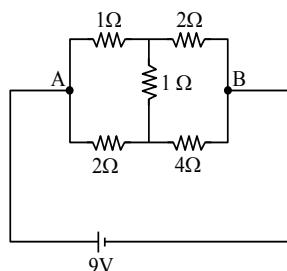

$$= 30 \times 10^{-6} \text{ J}$$

Correct Option (3)

SECTION - B

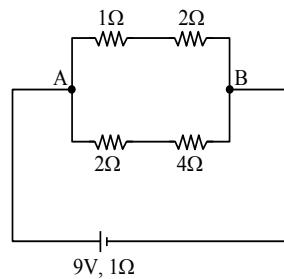
46. A collimated beam of light of diameter 2 mm is propagating along x-axis. The beam is required to be expanded in a collimated beam of diameter 14 mm using a system of two convex lenses. If first lens has focal length 40 mm, then the focal length of second lens is _____ mm.

Ans. (280)

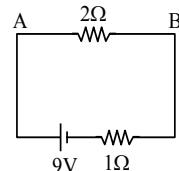


$$\frac{40}{2} = \frac{f}{14}$$

$$\Rightarrow f = 280 \text{ mm}$$


Correct Answer : 280

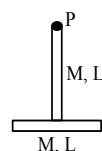
47. The heat generated in 1 minute between points A and B in the given circuit, when a battery of 9V with internal resistance of 1 Ω is connected across these points is _____ J.



Ans. (1080)

Sol.

Balanced Wheatstone bridge


$$i = \frac{9}{3} = 3 \text{ A}$$

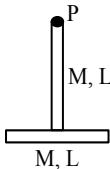
$$\therefore H_{AB} = i^2 R_{AB} t$$

$$= (3)^2 \times 2 \times 60 = 1080 \text{ J}$$

Correct Answer : 1080

48. Two identical thin rods of mass $M \text{ kg}$ and length $L \text{ m}$ are connected as shown in figure. Moment of inertia of the combined rod system about an axis passing through point P and perpendicular to the plane of the rods is $\frac{x}{2} ML^2 \text{ kg m}^2$. The value of x is _____.

Ans. (17)


Sol.

$$I = \frac{ML^2}{3} + \left(\frac{ML^2}{12} + ML^2 \right)$$

$$= \frac{4ML^2 + ML^2 + 12ML^2}{12}$$

$$I = \frac{17}{12} ML^2$$

$$\therefore x = 17$$

Correct Answer : 17

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

49. 10 mole of oxygen is heated at constant volume from 30°C to 40°C . The change in the internal energy of the gas is _____ cal. (The molecular specific heat of oxygen at constant pressure, $C_p = 7 \text{ cal./mol } ^{\circ}\text{C}$ and $R = 2 \text{ cal./mol } ^{\circ}\text{C}$.)

Ans. (500)

Sol. $\Delta U = nC_v \Delta T$

$$= n(C_p - R)\Delta T$$

$$= 10(7 - 2)(40 - 30)$$

$$\Delta U = 500$$

Correct Answer : 500

50. In a microscope the objective is having focal length $f_o = 2 \text{ cm}$ and eye-piece is having focal length $f_e = 4 \text{ cm}$. The tube length is 32 cm. The magnification produced by this microscope for normal adjustment is _____.

Ans. (100)

Sol. $m \approx \frac{f_o f_e}{f_o + f_e}$

$$= \frac{32}{2} \times \frac{25}{4}$$

$$m = 100$$

Correct Answer : 100

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

ALLEN

For Class 12th Pass Students

**RISE. REPEAT.
RANK UP IN JEE**

JOIN LEADER COURSE

JEE (Main+Adv.) 2027

26th Mar & 15th Apr

Know more

ALLEN ONLINE

**Think JEE 2027
will be your **best shot?****

Join the Leader Online Course!

Win up to

90% scholarship

via ASAT

Enrol Now

Get REAL exam practice
for **JEE Main 2026**

with the

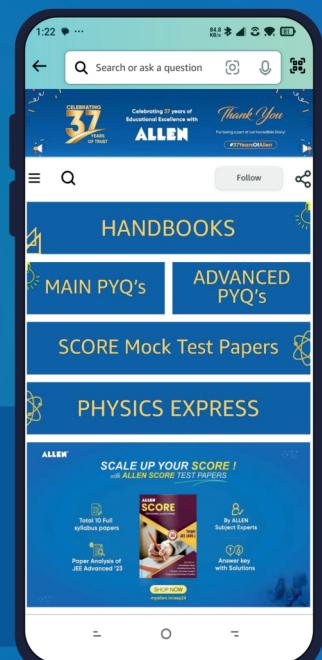
Major Online Test Series!

13 full-syllabus tests

100+ additional mock tests

50,000+ teacher-
recommended Qs. & more

Buy Now


ALLEN

Get The Latest
IIT-JEE Special Books
at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING

with

HANDBOOKS | ADVANCED-QB | SCORE PAPERS
PHYSICS EXPRESS | MAIN PYQ's | Adv. PYQ's

SHOP NOW

Available in
HINDI & ENGLISH